Traditional materials utilized for dental applications have been selected based on their mechanical properties and ability to remain inert in vivo; this selection process has provided materials that satifisfy physiological loading conditions but do not duplicate the mechanical, chemical, and architectural properties of bone. The less than optimal surface properties of conventional materials have resulted in clinical complications that necessitate surgical removal of many such failed bone implants due to insufficient bonding to juxtaposed bone. Due to unique surface and mechanical properties, as well as the ability to simulate the three-dimensional architecture of physiological bone, one possible consideration for the next generation of orthopedic and dental implants with improved efficacy are nanophase materials.
Kaplan, F. S., Hayes, W. C., Keaveny, T. M., Boskey, A., Einhorn, T. A., and Iannotti, J. P., Form and function of bone, in “Orthopaedic Basic Science” (S. P. Simon, Ed.) 1994,: 127- 185.
American Academy of Orthopaedic Surgeons, Columbus, Ohio. Siegel, R. W., Creating nanophase materials. Sci. Amer. 1996 275, 42-47.
Siegel, R.W., and Fougere, G. E., Mechanical properties of nanophase metals. (1995a). Nanostructured Materials 6, 205
Park, J. B., and Lakes, R. S., “Biomaterials: an Introduction Second Edition,” Plenum Press, New York, 1992: 79- 244.
Lausmaa, J., Kasemo, B., Matsson, H., and Odelius, H., Multitechnique surface characterizations of oxide films on electropolished and anodically oxidized titanium App. Surf. Sci.; 1990 45: 189- 200
Doremus, R. H., Review: bioceramics. J. Mat. Sci. (1992). 27, 285 - 97
Grenoble, D. E., Katz, J. L., Dunn, K. L., Gilmore, R. S., and Murty, K. L., The elastic properties of hard tissues and apatites. J. Biomed. Mat. Res. 1972; 6,:221-33
Jarcho, M., Kay, J. F., Gumaer, K. 1., Doremus, R. H., and Drobeck, H. P., Tissue, cellular and subcellular events at a boneceramic hydroxylapatite interface. J. Bioeng. (1977); 1: 79- 92.
Garcia, R., and Doremus, R. H., Electron microscopy of the bonehydroxyapatite interface from a human dental implant. J. Mat. Sci.: Materials in Medicine 1992; 3, 154 - 56
Hench, L. L., Bioceramics: from concept to clinic. Amer. Ceramic Soc. Bull. 1993; 72; 93-98
Ducheyne, P., Bioactive ceramics. J. Bone Joint Surg. 1994; 76B, 861- 62.
Degasne, I., Basle, M. F., Demais, V., Hure, G., Lesourd, M., Grolleau, B., Mercier, L., and Chappard, D., Effects of roughness, fibronectin and vitronectin on attachment, spreading, and prolife ration of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcified Tissue International 1999; 64 (6): 499-507.
Keller, J. C., Stanford, C. M., Wightsman, J.P., Draughn, R. A., and Zaharias, R., Characterization of titanium implant surfaces. III. J. Biomed. Mat. Res. 1994. 28: 939-46
Wen, X., Wang, X., and Zhang, N., Microrough surface of metallic biomaterials: a literature review. Biomed. Mat. Eng. 1996;. 6 (3): 173- 89.
Puleo, D. A., Preston, K. E., Shaffer, J.B., and Bizios, R., Examination of osteoblast-orthopaedic biomaterials interactions using molecular techniques. Biomaterials 1993; 14: 111- 14
Garvey, B. T., and Bizios, R., A transmission electron microscopy examination of the interface between osteoblasts and metal biomaterials. J. Biomed. Mat. Res. 1995; 29 (8):987- 92.
Davies, J. E., and Matsuda, T., Extracellular matrix production by osteoblas ts on bioactive substrates in vi tro. Scanning Microscopy 1994); 2, 1445 - 52.
Curtis, A., and Wilkinson, C., Review: Topographical control of cells. Biomaterials (1997); 18 (24): 1573-83.
Gomi, K., Lowenberg, B., Shapiro, G., and Davies, J. E., Resorption of sintered hydroxyapatit by osteoclasts in vitro. Biomaterials 1993; 14 (2), 91- 96.
Dee, K. C., Andersen, T. T., Rueger, D. C., and Bizios, R., Conditions which promote mineralization at the bone/implant interface: a model in vitro study. Biomaterials 1996; 17, 209- 15.
Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R.W., and Bizios, R., Enhanced functions on osteoblasts on nanophase ceramics. Biomaterials 2000b; 2 1: 1803-10
Webster, T. J., Schadler, L. S., Siegel, R.W., and Bizios, R., Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Engineering 2001; 7 (3), 291 -302
Mayo, M., Siegel, R. W., Narayanasamy, A., and Nix, W. D., Mechanical properties of Ti02 as determined by nanoindentation. J. Mat. Res. (1990). 5, 1073.