Dental Journal of Advance Studies

Register      Login

VOLUME 12 , ISSUE 1 ( January-April, 2024 ) > List of Articles


Gene Therapy and CRISPR/Cas Technology in Dentistry: A Review

Arthi Marimuthu, Rathna Piriyanga, Geeth Deepika, Azhagu A Alagianambi

Keywords : CRISPR/Cas technology, Dentistry genome editing, Gene therapy, Oral health

Citation Information : Marimuthu A, Piriyanga R, Deepika G, Alagianambi AA. Gene Therapy and CRISPR/Cas Technology in Dentistry: A Review. 2024; 12 (1):49-54.

DOI: 10.5005/djas-11014-0033

License: CC BY-NC-ND 4.0

Published Online: 30-04-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Background: The evolution of gene therapy, conceptualized in the 1960s, reached a pivotal moment in 1989–1990 with the approval of the first human clinical studies. Gene therapy, as defined by the US Food and Drug Administration (FDA), involves the administration of genetic material via nucleic acids, viruses, or genetically engineered microorganisms. This review explores the historical development and current landscape of gene therapy, focusing on its applications in dentistry. Materials and methods: A comprehensive narrative literature search, utilizing PubMed, MEDLINE, Scopus, and Web of Science databases, was conducted. Keywords and MeSH terms related to gene therapy, CRISPR/Cas technology, and dentistry were employed. Inclusion criteria encompassed English-language publications from the last 10 years, specifically focusing on the gene therapy or CRISPR/Cas applications in dentistry. Data synthesis involved critical appraisal and extraction of relevant information. Results: Gene transfer, a cornerstone of gene therapy, involves modifying defective genes through the injection of genetically modified vectors into target cells, either in vivo or ex vivo. Various methods, including physical (electroporation, microinjection) and chemical (calcium phosphate, liposome) approaches, facilitate gene modification. Dentistry applications range from addressing diseases such as squamous cell carcinoma and Sjogren's syndrome to enhancing bone regeneration, implants, and managing chronic pain. Conclusion: The potential of gene therapy and CRISPR/Cas technology in dentistry is vast, offering innovative, personalized therapeutic interventions. However, challenges such as ethical considerations and the need for long-term efficacy studies must be addressed to ensure the transformative impact of these technologies on oral healthcare practices. The future promises a paradigm shift in dental care, with gene therapy leading the way towards more effective and targeted treatments.

  1. Cotrim AP, Baum BJ. Gene therapy: Some history, applications, problems, and prospects. Toxicol pathol 2008;36(1):97–103. DOI: 10.1177/0192623307309925.
  2. Prabhakar AR, Paul JB, Basappa N. Gene therapy and its implications in dentistry. Int J Clin Pediatr Dent 2011;4(2):85–92. DOI: 10.5005/jp-journals-10005-1088.
  3. Goncalves GAR, de Melo Alves Paiva R. Gene therapy: Advances, challenges and perspectives. Einstein (Sao Paulo) 2017;15(3):369–375. DOI: 10.1590/S1679-45082017RB4024.
  4. Siddique N, Raza H, Ahmed S, et al. Gene therapy: A paradigm shift in dentistry. Genes 2016;7(11):98. DOI: 10.3390/genes7110098.
  5. Baum BJ, Kok M, Tran SM, et al. The impact of gene therapy on dentistry: A revisiting after six years. J Am Dent Assoc 2002;133(1): 35–44. DOI: 10.14219/jada.archive.2002.0019.
  6. Mammen B, Ramakrishnan T, Sudhakar U, et al. Principles of gene therapy. Indian J Dent Res 2007;18(4):196–200. DOI: 10.4103/0970-9290.35832.
  7. Gupta K, Singh S, Garg KN. Gene therapy in dentistry: Tool of genetic engineering. Revisited. Arc Oral Biol 2014;60(3):439–446. DOI: 10.1016/j.archoralbio.2014.11.018.
  8. Xi S, Grandis JR. Gene therapy for the treatment of oral squamous cell carcinoma. J Dent Res 2003;82(1):11–16. DOI: 10.1177/154405910308200104.
  9. Kumar NA, Agrawal A, Sreedevi R. Novel therapy for oral cancer – Gene therapy: An Update. Br J Med Med Res 2015;9(3):1–8. DOI: 10.9734/BJMMR/2015/15317.
  10. Denny WA. Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene therapy). J Biomed Biotech 2003;2003(1):48–70. DOI: 10.1155/S1110724303209098.
  11. Gholizadeh P, Aghazadeh M, Ghotaslou R, et al. CRISPR-cas system in the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis. Virulence 2020;11(1):1257–1267. DOI: 10.1080/21505594.2020.1809329.
  12. Gholizadeh P, Aghazadeh M, Ghotaslou R, et al. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann Clin Microbiol Antimicrob 2021;20(1):1–12. DOI: 10.1186/s12941-021-00455-6.
  13. Kaushal K, Tyagi A, Karapurkar JK, et al. Genome-wide CRISPR/Cas9-based screening for deubiquitinase subfamily identifies ubiquitin-specific protease 11 as a novel regulator of osteogenic differentiation. Int J Mol Sci 2022;23(2):856. DOI: 10.3390/ijms 23020856.
  14. Gong T, Tang B, Zhou X, et al. Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol Oral Microbiol 2018;33(6):440–449. DOI: 10.1111/omi.12247.
  15. Jangam DK, Talreja KM. Applications of crispr technology in dentistry: A review. Eur J Biomed Pharm Sci 2020;7(6):314–320. Available from:
  16. Baum BJ, Alevizos I, Chiorini JA, et al. Advances in salivary gland gene therapy – oral and systemic implications. Expert Opin Biol Ther 2015;15(10):1443–1454. DOI: 10.1517/14712598.2015.1064894.
  17. Corden A, Handelman B, Yin H, et al. Neutralizing antibodies against adeno-associated viruses in Sjögren's patients: Implications for gene therapy. Gene Ther 2017;24(4):241–244. DOI: 10.1038/gt.2017.1.
  18. Franceschi RT. Biological approaches to bone regeneration by gene therapy. J Dent Res 2005;84(12):1093–1103. DOI: 10.1177/154405910508401204.
  19. Koh JT, Zhao Z, Wang Z, et al. Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration. J Dent Res 2008;87(9):845–849. DOI: 10.1177/154405910808700906.
  20. Luk KDK, Chen Y, Cheung KMC, et al. Adeno-associated virus mediated bone morphogenetic protein-4 gene therapy for in vivo bone formation. Biochem Biophys Res Commun 2003;308(3): 636–645. DOI: 10.1016/s0006-291x(03)01429-3.
  21. Murashima-Suginami A, Kiso H, Tokita Y, et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling. Sci Adv 2021;7(7):eabf1798. DOI: 10.1126/sciadv.abf1798.
  22. Nakashima M, Iohara K, Ishikawa M, et al. Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 2004;15(11):1045–1053. DOI: 10.1089/hum.2004.15.1045.
  23. Iglesias-Linares A, Moreno-Fernandez AM, Yanez-Vico R, et al. The use of gene therapy vs. corticotomy surgery in accelerating orthodontic tooth movement. Orthod Craniofac Res 2011;14(3): 138–148. DOI: 10.1111/j.1601-6343.2011.01519.x.
  24. Kanzaki H, Chiba M, Arai K, et al. Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther 2006;13(8):678–685. DOI: 10.1038/
  25. Finegold AA, Mannes AJ, Iadarola MJ. A paracrine paradigm for in vivo gene therapy in the central nervous system: Treatment of chronic pain. Hum Gene Ther 1999;10(7):1251–1257. DOI: 10.1089/10430349950018238.
  26. Mahale S, Dani N, Ansari SS, et al. Gene therapy and its implications in periodontics. J Indian Soc Periodontol 2009;13(1):1–5. DOI: 10.4103/0972-124X.51886.
  27. Dunn CA, Jin Q, Taba Jr M, et al. BMP gene delivery for alveolar bone engineering at dental implant defects. Mol Ther 2005;11(2):294–299. DOI: 10.1016/j.ymthe.2004.10.005.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.